Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.
نویسندگان
چکیده
Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens.
منابع مشابه
Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism
Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, tw...
متن کاملTomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride
Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhou...
متن کاملThe Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum
Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growt...
متن کاملInduction of Systemic Resistance by Trichoderma harzianum Isolates in Pistachio Plants in-Fected with Verticillium dahliae
Twenty isolates of Trichoderma harzianum wereisolated from the rhizosphere of healthy pistachio plants from different localities of Kerman Province, Iran.Five isolates with high antagonistic activity in in vitro assays against Verticillium dahliae (the causal agent of pistachio wilt), were investigated for their effect on the defense enzymes, peroxidase (PO), phenyl alanine-ammonia lyase (PAL) ...
متن کاملAntagonistic Activities of Trichoderma spp. on Phytophthora Root Rot of Sugar Beet
Trichoderma species are among important antagonists of plant pathogenic fungi. The main purpose of this study was to evaluate the biocontrol potential of native Trichoderma spp. isolates from sugar beet fields against Phytophthora drechsleri and P. cryptogea, the causal agents of Phytophthora root rot of sugar beet. During 2007–08, 85 isolates of Trichoderma spp. from sugar beet fields in eight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 7 شماره
صفحات -
تاریخ انتشار 2005